Full text

Turn on search term navigation

© 2020 Bowers, Reist. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Author summary

The postulated role of synaptotagmin’s C2A domain in triggering neurotransmitter release has fluctuated wildly over the years. Early biochemical experiments suggested that the C2A domain was essential, while the C2B domain was superfluous. Then, functional experiments measuring neurotransmitter release in vivo following disruptions in Ca2+ binding suggested that C2B was essential, while C2A was superfluous. Subsequently, the use of more refined mutations to disrupt Ca2+ binding indicated that C2A played a facilitatory role. Here we show two hydrophobic residues of the C2A domain are absolutely required for synaptotagmin-triggered neurotransmitter release. Thus, after over twenty years of research, we now demonstrate that the C2A domain of synaptotagmin is an essential component of the Ca2+ sensor for triggering synaptic transmission in vivo.

Details

Title
The C2A domain of synaptotagmin is an essential component of the calcium sensor for synaptic transmission
Author
Bowers, Matthew R; Reist, Noreen E
First page
e0228348
Section
Research Article
Publication year
2020
Publication date
Feb 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2352320864
Copyright
© 2020 Bowers, Reist. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.