It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Morphogenetic events that occur during development and regeneration are energy demanding processes requiring profound rearrangements in cell architecture, which need to be coordinated in timely fashion with other cellular activities, such as proliferation, migration and differentiation. In the last 15 years, it has become evident that autophagy, an evolutionarily-conserved catabolic process that mediates the lysosomal turnover of organelles and macromolecules, is an essential “tool” to ensure remodelling events that occur at cellular and tissue levels. Indeed, studies in several model organisms have shown that the inactivation of autophagy genes has a significant impact on embryogenesis and tissue regeneration, leading to extensive cell death and persistence of unnecessary cell components. Interestingly, the increased understanding of the mechanisms that confers selectivity to the autophagic process has also contributed to identifying development-specific targets of autophagy across species. Moreover, alternative ways to deliver materials to the lysosome, such as microautophagy, are also emerging as key actors in these contexts, providing a more complete view of how the cell component repertoire is renovated. In this review, we discuss the role of different types of autophagy in development and regeneration of invertebrates and vertebrates, focusing in particular on its contribution in cnidarians, platyhelminthes, nematodes, insects, zebrafish and mammals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
2 Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
3 Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
4 Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy; Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”, Rome, Italy