It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Continuous miniaturization of circuitry has open the door for various novel application scenarios of millimeter-sized wireless agents such as for the exploration of difficult-to-access fluid environments. In this context, agents are envisioned to be employed, e.g., for pipeline inspection or groundwater analysis. In either case, the demand for miniature sensors is incompatible with propulsion capabilities. Consequently, the agents are condemned to be kinetically passive and are, thus, subject to the fluid dynamics present in the environment. In these situations, the localization is complicated by the fact that unknown external forces (e.g., from the fluid) govern the motion of the agents. In this work, a comprehensive framework is presented that targets the simultaneous estimation of the external forces stemming from the fluid and the agents’ positions which are traversing the environment. More precisely, a Bayesian hierarchical model is proposed that models’ relevant characteristics of the fluid via a spatial random field and incorporates this as control input into the motion model. The random field model facilitates the consideration of spatial correlation among the agents’ trajectories and, thereby, improves the localization significantly. Additionally, this is combined with multiple particle filtering to account for the fact that within such underground fluid environments, only a localization based on distance and/or bearing measurements is feasible. In the results provided in this work, which are based on realistic computational fluid dynamics simulations, it is shown that—via the proposed spatial model—significant improvements in terms of localization accuracy can be achieved.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer