It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The study of gaze behavior has primarily been constrained to controlled environments in which the head is fixed. Consequently, little effort has been invested in the development of algorithms for the categorization of gaze events (e.g. fixations, pursuits, saccade, gaze shifts) while the head is free, and thus contributes to the velocity signals upon which classification algorithms typically operate. Our approach was to collect a novel, naturalistic, and multimodal dataset of eye + head movements when subjects performed everyday tasks while wearing a mobile eye tracker equipped with an inertial measurement unit and a 3D stereo camera. This Gaze-in-the-Wild dataset (GW) includes eye + head rotational velocities (deg/s), infrared eye images and scene imagery (RGB + D). A portion was labelled by coders into gaze motion events with a mutual agreement of 0.74 sample based Cohen’s κ. This labelled data was used to train and evaluate two machine learning algorithms, Random Forest and a Recurrent Neural Network model, for gaze event classification. Assessment involved the application of established and novel event based performance metrics. Classifiers achieve ~87% human performance in detecting fixations and saccades but fall short (50%) on detecting pursuit movements. Moreover, pursuit classification is far worse in the absence of head movement information. A subsequent analysis of feature significance in our best performing model revealed that classification can be done using only the magnitudes of eye and head movements, potentially removing the need for calibration between the head and eye tracking systems. The GW dataset, trained classifiers and evaluation metrics will be made publicly available with the intention of facilitating growth in the emerging area of head-free gaze event classification.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Chester F. Carlson Center for Imaging Science, RIT, Rochester, USA (GRID:grid.262613.2) (ISNI:0000 0001 2323 3518)
2 Golisano College of Computing and Information Sciences, RIT, Rochester, USA (GRID:grid.262613.2) (ISNI:0000 0001 2323 3518)