Full text

Turn on search term navigation

© 2020 Valentin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Machine learning algorithms are becoming increasingly popular for decoding psychological constructs based on neural data. However, as a step towards bridging the gap between theory-driven cognitive neuroscience and data-driven decoding approaches, there is a need for methods that allow to interpret trained decoding models. The present study demonstrates grouped model reliance as a model-agnostic permutation-based approach to this problem. Grouped model reliance indicates the extent to which a trained model relies on conceptually related groups of variables, such as frequency bands or regions of interest in electroencephalographic (EEG) data. As a case study to demonstrate the method, random forest and support vector machine models were trained on within-participant single-trial EEG data from a Sternberg working memory task. Participants were asked to memorize a sequence of digits (0–9), varying randomly in length between one, four and seven digits, where EEG recordings for working memory load estimation were taken from a 3-second retention interval. The present results confirm previous findings insofar as both random forest and support vector machine models relied on alpha-band activity in most subjects. However, as revealed by further analyses, patterns in frequency and topography varied considerably between individuals, pointing to more pronounced inter-individual differences than previously reported.

Details

Title
Interpreting neural decoding models using grouped model reliance
Author
Valentin, Simon; Harkotte, Maximilian; Popov, Tzvetan
First page
e1007148
Section
Research Article
Publication year
2020
Publication date
Jan 2020
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2355997971
Copyright
© 2020 Valentin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.