Abstract

CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.

Details

Title
Effects of a patient-derived de novo coding alteration of CACNA1I in mice connect a schizophrenia risk gene with sleep spindle deficits
Author
Ghoshal Ayan 1 ; Uygun, David S 2 ; Yang, Lingling 1 ; McNally, James M 2 ; Lopez-Huerta, Violeta G 3 ; Arias-Garcia, Mario A 3 ; Baez-Nieto, David 1 ; Allen, Andrew 1 ; Fitzgerald, Megan 1 ; Choi Soonwook 4 ; Zhang Qiangge 5 ; Hope, Jen M 1 ; Yan, Karena 1 ; Mao Xiaohong 6 ; Nicholson, Thomas B 6   VIAFID ORCID Logo  ; Imaizumi Kazuo 7   VIAFID ORCID Logo  ; Fu Zhanyan 4 ; Feng Guoping 4   VIAFID ORCID Logo  ; Brown, Ritchie E 2 ; Strecker, Robert E 2   VIAFID ORCID Logo  ; Purcell, Shaun M 8 ; Pan, Jen Q 1 

 Broad Institute, Stanley Center for Psychiatric Research, Cambridge, USA (GRID:grid.66859.34) 
 VA Boston Healthcare System & Harvard Medical School, Department of Psychiatry, Boston, USA (GRID:grid.410370.1) (ISNI:0000 0004 4657 1992) 
 Broad Institute, Stanley Center for Psychiatric Research, Cambridge, USA (GRID:grid.66859.34); McGovern Institute for Brain Research, MIT, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); National Autonomous University of Mexico, Department of Neurodevelopment and Physiology, Institute of Cellular Physiology, Mexico City, Mexico (GRID:grid.9486.3) (ISNI:0000 0001 2159 0001) 
 Broad Institute, Stanley Center for Psychiatric Research, Cambridge, USA (GRID:grid.66859.34); McGovern Institute for Brain Research, MIT, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 McGovern Institute for Brain Research, MIT, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 Novartis Institutes for BioMedical Research, Cambridge, USA (GRID:grid.418424.f) (ISNI:0000 0004 0439 2056) 
 Harvard University, Wyss Institute, Cambridge, USA (GRID:grid.38142.3c) (ISNI:000000041936754X) 
 Harvard Medical School, Brigham and Women’s Hospital, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
21583188
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2356644053
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.