It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The interactions between non-coding RNAs (ncRNA) and proteins play an essential role in many biological processes. Several high-throughput experimental methods have been applied to detect ncRNA-protein interactions. However, these methods are time-consuming and expensive. Accurate and efficient computational methods can assist and accelerate the study of ncRNA-protein interactions.
Results
In this work, we develop a stacking ensemble computational framework, RPI-SE, for effectively predicting ncRNA-protein interactions. More specifically, to fully exploit protein and RNA sequence feature, Position Weight Matrix combined with Legendre Moments is applied to obtain protein evolutionary information. Meanwhile, k-mer sparse matrix is employed to extract efficient feature of ncRNA sequences. Finally, an ensemble learning framework integrated different types of base classifier is developed to predict ncRNA-protein interactions using these discriminative features. The accuracy and robustness of RPI-SE was evaluated on three benchmark data sets under five-fold cross-validation and compared with other state-of-the-art methods.
Conclusions
The results demonstrate that RPI-SE is competent for ncRNA-protein interactions prediction task with high accuracy and robustness. It’s anticipated that this work can provide a computational prediction tool to advance ncRNA-protein interactions related biomedical research.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer