It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Drug-induced liver injury (DILI) is a major concern in drug development, as hepatotoxicity may not be apparent at early stages but can lead to life threatening consequences. The ability to predict DILI from in vitro data would be a crucial advantage. In 2018, the Critical Assessment Massive Data Analysis group proposed the CMap Drug Safety challenge focusing on DILI prediction.
Methods and results
The challenge data included Affymetrix GeneChip expression profiles for the two cancer cell lines MCF7 and PC3 treated with 276 drug compounds and empty vehicles. Binary DILI labeling and a recommended train/test split for the development of predictive classification approaches were also provided. We devised three deep learning architectures for DILI prediction on the challenge data and compared them to random forest and multi-layer perceptron classifiers. On a subset of the data and for some of the models we additionally tested several strategies for balancing the two DILI classes and to identify alternative informative train/test splits. All the models were trained with the MAQC data analysis protocol (DAP), i.e., 10x5 cross-validation over the training set. In all the experiments, the classification performance in both cross-validation and external validation gave Matthews correlation coefficient (MCC) values below 0.2. We observed minimal differences between the two cell lines. Notably, deep learning approaches did not give an advantage on the classification performance.
Discussion
We extensively tested multiple machine learning approaches for the DILI classification task obtaining poor to mediocre performance. The results suggest that the CMap expression data on the two cell lines MCF7 and PC3 are not sufficient for accurate DILI label prediction.
Reviewers
This article was reviewed by Maciej Kandula and Paweł P. Labaj.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer