Full text

Turn on search term navigation

© 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Organic compounds with active sites for lithiation can be used as electrode materials for lithium batteries. Their tunable structures allow a variety of materials to be made and investigated. Herein, a spectrum of dipyridyl polysulfides (Py2Sx, 3 ≤ x ≤ 8) is prepared in electrolyte by a one‐pot synthesis method from dipyridyl disulfide (Py2S2) and elemental sulfur. It renders up to seven dipyridyl polysulfides (i.e., Py2S3, Py2S4, Py2S5, Py2S6, Py2S7, and Py2S8) which show fully reversible electrochemical behavior in lithium batteries. In the discharge, the initial lithiation occurs at 2.45 V leading to the breakage of SαSβ bonds in Py2Sx and formation of lithium 2‐pyridinethiolate, in which lithium is coordinated in between N and S atoms. The left sulfur species act as elemental sulfur, showing two voltage plateaus at 2.3 and 2.1 V. The molecular dynamics simulations show the attraction between pyridyl groups and lithium polysulfides/sulfide via N···Li···S bonds, which enable good retention of soluble discharge products within electrodes and stable cycling performance. In the recharge, low‐order Py2Sx (e.g., Py2S3, Py2S4, and Py2S5) remain as the charged products. The mixture catholyte exhibits superlong cycle life at 1C rate with 1200 cycles and 70.5% capacity retention.

Details

Title
Long Cycle Life Organic Polysulfide Catholyte for Rechargeable Lithium Batteries
Author
Dan‐Yang Wang 1 ; Si, Yubing 1 ; Guo, Wei 1 ; Fu, Yongzhu 1   VIAFID ORCID Logo 

 College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China 
Section
Communications
Publication year
2020
Publication date
Feb 2020
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2357342104
Copyright
© 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.