Abstract

Background

Accumulating literatures have indicated that long non-coding RNAs (lncRNAs) are potential biomarkers that play key roles in tumor development and progression. Urothelial cancer associated 1 (UCA1) is a novel lncRNA that acts as a potential biomarker and is involved in the development of cancers. However, the molecular mechanism of UCA1 in renal cancer is still needed to further explore.

Methods

The relative expression level of UCA1 was determined by Real-Time qPCR in a total of 88 patients with urothelial renal cancer and in different renal cancer cell lines. Loss-of-function experiments were performed to investigate the biological roles of UCA1 and miR-182-5p on renal cancer cell proliferation, migration, apoptosis and tumorigenicity. Comprehensive transcriptional analysis, dual-luciferase reporter assay and western blot etc. were performed to explore the molecular mechanisms underlying the functions of UCA1.

Results

In this study, we found that UCA1 was significantly up-regulated in renal cancer. Moreover, increased UCA1 expression was positively correlated with differentiation and advanced TNM stage. Further experiments demonstrated that knockdown of UCA1 inhibited malignant phenotypes and Notch signal path of renal cancer cells, and miR-182-5p was reverse function as UCA1. UCA1 functioned as a miRNA sponge to positively regulate the expression of Delta-like ligand 4(DLL4) through sponging miR-182-5p and subsequently promoted malignant phenotypes of renal cancer cells, thus UCA1 playing an oncogenic role and miR-182-5p as an antioncogenic one in renal cancer pathogenesis.

Conclusion

UCA1-miR-182-5p-DLL4 axis is involved in proliferation and progression of renal cancer. Thus, this study demonstrated that UCA1 plays a critical regulatory role in renal cancer cell and UCA1 may serve as a potential diagnostic biomarker and therapeutic target of renal cancer.

Details

Title
Long non-coding RNA UCA1 promotes malignant phenotypes of renal cancer cells by modulating the miR-182-5p/DLL4 axis as a ceRNA
First page
1
Section
Research
Publication year
2020
Publication date
2020
Publisher
BioMed Central
e-ISSN
14764598
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2357953760
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.