It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background Genome-wide association studies have identified multiple genomic loci associated with coronary artery disease, but most are common variants in non-coding regions that provide limited information on causal genes and etiology of the disease. To better understand etiological pathways that might lead to discovery of new treatments or prevention strategies, we focused our investigation on low-frequency and rare sequence variations primarily residing in coding regions of the genome while also exploring associations with common variants. Methods and Results Using samples of individuals of European ancestry from ten cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-sectional and prospective analyses were conducted to examine associations between genetic variants and myocardial infarction (MI), coronary heart disease (CHD), and all-cause mortality following these events. Single variant and gene-based analyses were performed separately in each cohort and then meta-analyzed for each outcome. A low-frequency intronic variant (rs988583) in PLCL1 was significantly associated with prevalent MI (OR=1.80, 95% confidence interval: 1.43, 2.27; P =7.12 × 10 -7 ). Three common variants, rs9349379 in PHACTR1 , and rs1333048 and rs4977574 in the 9p21 region, were significantly associated with prevalent CHD. Four common variants (rs4977574, rs10757278, rs1333049, and rs1333048) within the 9p21 locus were significantly associated with incident MI. We conducted gene-based burden tests for genes with a cumulative minor allele count (cMAC) 5 and variants with minor allele frequency (MAF) < 5%. TMPRSS5 and LDLRAD1 were significantly associated with prevalent MI and CHD, respectively, and RC3H2 and ANGPTL4 were significantly associated with incident MI and CHD, respectively. No loci were significantly associated with all-cause mortality following a MI or CHD event. Conclusion This study confirmed previously reported loci influencing heart disease risk, and one single variant and three genes associated with MI and CHD were newly identified and warrant future investigation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer