Full text

Turn on search term navigation

Copyright © 2020 Zhang Rong-rong and Ma Dong-dong. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Metakaolin (MK), which has a fine particle size and higher activity in high alkaline environments, has been widely used in the fields of soil treatment engineering to stabilize soils. MK is used to replace part of ordinary Portland cement (OPC) with 0 : 15, 2 :13, 4 : 11 and 6 : 9 mass ratios of MK to OPC in this study. The mechanical property (e.g. stress-strain relationship, strength, and deformation performance) and microstructure characteristics of MK-based geopolymer cemented silty clay are investigated using unconfined compressive strength (UCS), nuclear magnetic resonance (NMR), and scanning electronic microscopy (SEM) tests. In addition, strength increase coefficient (ζs) and elasticity modulus increase coefficient (ζe) are defined to evaluate the effects of curing time on the mechanical property of MK-based geopolymer cemented silty clay. Moreover, the relationships among porosity, UCS, and E50 of MK-cemented silty clay are studied. By incorporating 2% MK, the UCS and E50 of MK-cemented silty clay at 28 d are 1.32 and 1.30 times compared with MK0 group, respectively. The increase rate of UCS and E50 from 1 d to 7 d is faster compared with that from 7 d to 28 d. Furthermore, the microstructure of the sample modified by 2% MK is most homogeneous and dense. Finally, the optimistic mass ratio between MK and cement is 2 : 13 for silty clay in this test condition.

Details

Title
Effects of Curing Time on the Mechanical Property and Microstructure Characteristics of Metakaolin-Based Geopolymer Cement-Stabilized Silty Clay
Author
Rong-rong, Zhang 1   VIAFID ORCID Logo  ; Dong-dong, Ma 1   VIAFID ORCID Logo 

 Research Center of Mine Underground Engineering, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China; School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, China; State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan, Anhui 232001, China 
Editor
Antonio Boccaccio
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2361814074
Copyright
Copyright © 2020 Zhang Rong-rong and Ma Dong-dong. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/