Abstract

Atomically-sharp tips in close proximity of metal surfaces create plasmonic nanocavities supporting both radiative (bright) and non-radiative (dark) localized surface plasmon modes. Disentangling their respective contributions to the total density of optical states remains a challenge. Electroluminescence due to tunnelling through the tip-substrate gap could allow the identification of the radiative component, but this information is inherently convoluted with that of the electronic structure of the system. In this work, we present a fully experimental procedure to eliminate the electronic-structure factors from the scanning tunnelling microscope luminescence spectra by confronting them with spectroscopic information extracted from elastic current measurements. Comparison against electromagnetic calculations demonstrates that this procedure allows the characterization of the meV shifts experienced by the nanocavity plasmonic modes under atomic-scale gap size changes. Therefore, the method gives access to the frequency-dependent radiative Purcell enhancement that a microscopic light emitter would undergo when placed at such nanocavity.

Disentangling the radiative and non-radiative plasmon mode contributions to the total photonic density of states is a challenge. Here, the authors report a procedure to eliminate the electronic-structure factors from scanning tunnelling microscope luminescence spectra to isolate the radiative component.

Details

Title
Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM
Author
Martín-Jiménez, Alberto 1 ; Fernández-Domínguez, Antonio I 2   VIAFID ORCID Logo  ; Lauwaet Koen 1 ; Granados, Daniel 1 ; Miranda, Rodolfo 3 ; García-Vidal, Francisco J 4 ; Otero, Roberto 3   VIAFID ORCID Logo 

 IMDEA Nanociencia, Madrid, Spain (GRID:grid.429045.e) (ISNI:0000 0004 0500 5230) 
 Universidad Autónoma de Madrid, Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126) 
 IMDEA Nanociencia, Madrid, Spain (GRID:grid.429045.e) (ISNI:0000 0004 0500 5230); Universidad Autónoma de Madrid, Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126) 
 Universidad Autónoma de Madrid, Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Madrid, Spain (GRID:grid.5515.4) (ISNI:0000000119578126); Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain (GRID:grid.452382.a) (ISNI:0000 0004 1768 3100) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2362206444
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.