Full text

Turn on search term navigation

© 2020, Asghari et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effects of the immunophilins, FKBP12 and FKBP12.6, and phosphorylation on type II ryanodine receptor (RyR2) arrangement and function were examined using correlation microscopy (line scan confocal imaging of Ca2+ sparks and dual-tilt electron tomography) and dSTORM imaging of permeabilized Wistar rat ventricular myocytes. Saturating concentrations (10 µmol/L) of either FKBP12 or 12.6 significantly reduced the frequency, spread, amplitude and Ca2+ spark mass relative to control, while the tomograms revealed both proteins shifted the tetramers into a largely side-by-side configuration. Phosphorylation of immunophilin-saturated RyR2 resulted in structural and functional changes largely comparable to phosphorylation alone. dSTORM images of myocyte surfaces demonstrated that both FKBP12 and 12.6 significantly reduced RyR2 cluster sizes, while phosphorylation, even of immunophilin-saturated RyR2, increased them. We conclude that both RyR2 cluster size and the arrangement of tetramers within clusters is dynamic and respond to changes in the cellular environment. Further, these changes affect Ca2+ spark formation.

Details

Title
Cardiac ryanodine receptor distribution is dynamic and changed by auxiliary proteins and post-translational modification
Author
Asghari Parisa; Scriven David RL; Ng, Myles; Panwar Pankaj; Chou, Keng C; Filip, van Petegem; Moore, Edwin DW
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2020
Publication date
2020
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2368518417
Copyright
© 2020, Asghari et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.