Abstract

Coupling nano-emitters to plasmonic antennas is a key milestone for the development of nanoscale quantum light sources. One challenge, however, is the precise nanoscale positioning of the emitter in the structure. Here, we present a laser etching protocol that deterministically positions a single colloidal CdSe/CdS core/shell quantum dot emitter inside a subwavelength plasmonic patch antenna with three-dimensional nanoscale control. By exploiting the properties of metal–insulator–metal structures at the nanoscale, the fabricated single-emitter antenna exhibits a very high-Purcell factor (>72) and a brightness enhancement of a factor of 70. Due to the unprecedented quenching of Auger processes and the strong acceleration of the multiexciton emission, more than 4 photons per pulse can be emitted by a single quantum dot, thus increasing the device yield. Our technology can be applied to a wide range of photonic nanostructures and emitters, paving the way for scalable and reliable fabrication of ultra-compact light sources.

Plasmonic antennas: precise alignment for high brightness

Finding practical ways to control and enhance the emission from single-photon sources is important for applications in quantum optics spanning from fundamental science to quantum information processing. While plasmonic antennas are a solution, the accurate alignment and coupling of such antennas to single-photon emitters like quantum dots, vacancy-centrenanodiamonds and fluorescent molecules is extremely challenging. Laser etching can help ease the task, allowing a CdSe/CdS core-shell quantum dot to be deterministically placed inside a subwavelength plasmonic patch antenna with 3 nm vertical and 50 m lateral precision. Amit Raj Dhawan and coworkers from Chengdu, China and Paris, France, show that the precise control over the location of the emitter results in an emitter-antenna system with a brightness enhancement of a factor of 70 and a large Purcell factor >72.

Details

Title
Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas
Author
Dhawan, Amit Raj 1 ; Belacel Cherif 2 ; Esparza-Villa, Juan Uriel 3 ; Nasilowski Michel 4 ; Wang, Zhiming 5 ; Schwob, Catherine 3 ; Jean-Paul, Hugonin 6 ; Coolen, Laurent 3 ; Dubertret Benoît 4 ; Senellart Pascale 7 ; Maître Agnès 3   VIAFID ORCID Logo 

 University of Electronic Science and Technology of China, Institute of Fundamental and Frontier Sciences, Chengdu, People’s Republic of China (GRID:grid.54549.39) (ISNI:0000 0004 0369 4060); Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR 7588, Paris, France (GRID:grid.4444.0) (ISNI:0000 0001 2112 9282) 
 Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR 7588, Paris, France (GRID:grid.4444.0) (ISNI:0000 0001 2112 9282); CNRS UMR9001, Université Paris-Saclay, Centre de Nanosciences et de Nanotechnologies et de Nanostructures, Marcoussis, France (GRID:grid.460789.4) (ISNI:0000 0004 4910 6535) 
 Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR 7588, Paris, France (GRID:grid.4444.0) (ISNI:0000 0001 2112 9282) 
 PSL Research University, Sorbonne Université, CNRS UMR 8213, Laboratoire de Physique et d’Etude des Matériaux, ESPCI-ParisTech, Paris, France (GRID:grid.462844.8) (ISNI:0000 0001 2308 1657) 
 University of Electronic Science and Technology of China, Institute of Fundamental and Frontier Sciences, Chengdu, People’s Republic of China (GRID:grid.54549.39) (ISNI:0000 0004 0369 4060) 
 CNRS UMR 8501, Université Paris Saclay, Laboratoire Charles Fabry, Institut d’Optique Graduate School, Palaiseau Cedex, France (GRID:grid.460789.4) (ISNI:0000 0004 4910 6535) 
 CNRS UMR9001, Université Paris-Saclay, Centre de Nanosciences et de Nanotechnologies et de Nanostructures, Marcoussis, France (GRID:grid.460789.4) (ISNI:0000 0004 4910 6535) 
Publication year
2020
Publication date
2020
Publisher
Springer Nature B.V.
e-ISSN
20477538
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2370450173
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.