It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Engineering useful functions into cells is one of the primary goals of synthetic biology. However, engineering novel functions that remain stable for multiple generations remains a significant challenge. Here we report the importance of host fitness on the stability of an engineered function. We find that the initial fitness of the host cell affects the stability of the engineered function. We demonstrate that adapting a strain to the intended growth condition increases fitness and in turn improves the stability of the engineered function over hundreds of generations. This approach offers a simple and effective method to increase the stability of engineered functions without genomic modification or additional engineering and will be useful in improving the stability of novel, engineered functions in living cells.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer