Abstract

Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently, very intensively studied examples in this regard are nanometer-thick single crystals of the layered material 1T-TaS2, where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here, we characterize the hidden quantum state of 1T-TaS2 by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of interlayer molecular orbital dimers as a key mechanism for this non-thermal collective transition between two truly long-range ordered electronic crystals.

The microscopic understanding of photo-induced insulator-to-metal transition (IMT) in 1T-TaS2 remains elusive. Here, Stahl et al. identify the collapse of interlayer molecular orbital dimers during a collective electronic phase transition as a key mechanism for the IMT in 1T-TaS2.

Details

Title
Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS2
Author
Stahl Quirin 1 ; Kusch Maximilian 1 ; Heinsch Florian 2 ; Garbarino Gaston 3   VIAFID ORCID Logo  ; Kretzschmar, Norman 3 ; Hanff Kerstin 4 ; Rossnagel Kai 5   VIAFID ORCID Logo  ; Geck Jochen 6 ; Ritschel Tobias 1   VIAFID ORCID Logo 

 Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
 Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (GRID:grid.40602.30) (ISNI:0000 0001 2158 0612) 
 ESRF, The European Synchrotron, Grenoble, France (GRID:grid.5398.7) (ISNI:0000 0004 0641 6373) 
 Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany (GRID:grid.9764.c) (ISNI:0000 0001 2153 9986) 
 Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany (GRID:grid.9764.c) (ISNI:0000 0001 2153 9986); Ruprecht-Haensel-Labor, Christian-Albrechts-Universität zu Kiel und Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453); Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453) 
 Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2372862456
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.