It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently, very intensively studied examples in this regard are nanometer-thick single crystals of the layered material 1T-TaS2, where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here, we characterize the hidden quantum state of 1T-TaS2 by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of interlayer molecular orbital dimers as a key mechanism for this non-thermal collective transition between two truly long-range ordered electronic crystals.
The microscopic understanding of photo-induced insulator-to-metal transition (IMT) in 1T-TaS2 remains elusive. Here, Stahl et al. identify the collapse of interlayer molecular orbital dimers during a collective electronic phase transition as a key mechanism for the IMT in 1T-TaS2.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257)
2 Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (GRID:grid.40602.30) (ISNI:0000 0001 2158 0612)
3 ESRF, The European Synchrotron, Grenoble, France (GRID:grid.5398.7) (ISNI:0000 0004 0641 6373)
4 Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany (GRID:grid.9764.c) (ISNI:0000 0001 2153 9986)
5 Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany (GRID:grid.9764.c) (ISNI:0000 0001 2153 9986); Ruprecht-Haensel-Labor, Christian-Albrechts-Universität zu Kiel und Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453); Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453)
6 Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257)