Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cutter edge temperature in milling is an important factor to cutter life. With high cutting speed and feedrate, the cutting efficiency is high; however, the cutter edge temperature is high, shortening the cutter life. Therefore, it is necessary to know the cutter edge temperature in milling. Unfortunately, the cutter edge temperature is difficult to measure and predict in milling. To address the technical challenge, an analytical approach was proposed to predict cutter edge temperature in milling. First, the heat flux into the cutter edge was calculated. Second, by using the Green function, the cutter edge temperature was figured out, and the results obtained from this approach agreed well with that of a recognized test. Then, based on the engagement between the cutter and workpiece in trochoidal milling, the cutter edge temperature was obtained in trochoidal milling. Finally, a temperature comparison was made between trochoidal and side milling based on this analytical approach, and the reasons that trochoidal machining could extend the cutter life were found. This approach is first proposed to calculate the cutter edge temperature in trochoidal milling and can be applied to machining parameters optimization in trochoidal milling and cutter design optimization.

Details

Title
An Analytical Approach to Cutter Edge Temperature Prediction in Milling and Its Application to Trochoidal Milling
Author
Deng, Qi; Mo, Rong; Chen, Zezhong C; Chang, Zhiyong
First page
1746
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2375537856
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.