It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We combine two-photon lithography and optical tweezers to investigate the Brownian fluctuations and propeller characteristics of a microfabricated helix. From the analysis of mean squared displacements and time correlation functions we recover the components of the full mobility tensor. We find that Brownian motion displays correlations between angular and translational fluctuations from which we can directly measure the hydrodynamic coupling coefficient that is responsible for thrust generation. By varying the distance of the microhelices from a no-slip boundary we can systematically measure the effects of a nearby wall on the resistance matrix. Our results indicate that a rotated helix moves faster when a nearby no-slip boundary is present, providing a quantitative insight on thrust enhancement in confined geometries for both synthetic and biological microswimmers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Roma, Italy
2 University of Rome “Sapienza”, Physics Department, Roma, Italy (GRID:grid.7841.a)
3 University of Rome “Sapienza”, Physics Department, Roma, Italy (GRID:grid.7841.a); Biological Research Centre, Institute of Biophysics, Szeged, Hungary (GRID:grid.418331.c) (ISNI:0000 0001 2195 9606)