Abstract

Oxygen vacancies in complex oxides are indispensable for information and energy technologies. There are several means to create oxygen vacancies in bulk materials. However, the use of ionic interfaces to create oxygen vacancies has not been fully explored. Herein, we report an oxide nanobrush architecture designed to create high-density interfacial oxygen vacancies. An atomically well-defined (111) heterointerface between the fluorite CeO2 and the bixbyite Y2O3 is found to induce a charge modulation between Y3+ and Ce4+ ions enabled by the chemical valence mismatch between the two elements. Local structure and chemical analyses, along with theoretical calculations, suggest that more than 10% of oxygen atoms are spontaneously removed without deteriorating the lattice structure. Our fluorite–bixbyite nanobrush provides an excellent platform for the rational design of interfacial oxide architectures to precisely create, control, and transport oxygen vacancies critical for developing ionotronic and memristive devices for advanced energy and neuromorphic computing technologies.

Oxygen vacancies can impart interesting properties in complex oxides, but specific architectures designed to create high-density oxygen vacancies are largely unknown. Here the authors report a fluorite-bixbyite nanobrush platform to tune interfacial oxygen and show that an atomically well-defined heterointerface can induce charge modulation.

Details

Title
Colossal oxygen vacancy formation at a fluorite-bixbyite interface
Author
Lee, Dongkyu 1   VIAFID ORCID Logo  ; Gao Xiang 2 ; Sun, Lixin 3 ; Jee Youngseok 4 ; Poplawsky, Jonathan 5   VIAFID ORCID Logo  ; Farmer, Thomas O 5 ; Fan Lisha 5   VIAFID ORCID Logo  ; Er-Jia, Guo 5   VIAFID ORCID Logo  ; Lu Qiyang 3   VIAFID ORCID Logo  ; Heller, William T 5   VIAFID ORCID Logo  ; Choi Yongseong 6   VIAFID ORCID Logo  ; Haskel, Daniel 6 ; Fitzsimmons, Michael R 7 ; Chisholm, Matthew F 5 ; Huang, Kevin 4   VIAFID ORCID Logo  ; Yildiz Bilge 3   VIAFID ORCID Logo  ; Lee Ho Nyung 5   VIAFID ORCID Logo 

 Oak Ridge National Laboratory, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659); University of South Carolina, Department of Mechanical Engineering, Columbia, USA (GRID:grid.254567.7) (ISNI:0000 0000 9075 106X) 
 Oak Ridge National Laboratory, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659); Center for High Pressure Science and Technology Advanced Research, Beijing, China (GRID:grid.503238.f) (ISNI:0000 0004 7423 8214) 
 Massachusetts Institute of Technology, Laboratory for Electrochemical Interface, Department of Nuclear Science and Engineering, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 University of South Carolina, Department of Mechanical Engineering, Columbia, USA (GRID:grid.254567.7) (ISNI:0000 0000 9075 106X) 
 Oak Ridge National Laboratory, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659) 
 Argonne National Laboratory, Advanced Photon Source, Argonne, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845) 
 Oak Ridge National Laboratory, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659); University of Tennessee at Knoxville, Department of Physics and Astronomy, Knoxville, USA (GRID:grid.411461.7) (ISNI:0000 0001 2315 1184) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2376946385
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.