It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The intrinsic apoptotic pathway is controlled by the BCL-2 family of proteins, which exhibit either a pro-death or pro-survival function. Gene knockout studies revealed that different pro-survival BCL-2 proteins are critical for the survival of distinct cell types, although overlapping functions amongst such proteins have also been identified. In the process of studying mice lacking single alleles of Mcl-1 (Mcl-1+/−), Bcl-2 (Bcl-2+/−), or both in combination (Mcl-1+/−Bcl-2+/−), we observed that Mcl-1+/−Bcl-2+/− mice weighed less when compared with their wild-type littermates as they aged. Body composition analysis demonstrated that while fat mass was similar to wild-type controls, lean mass was significantly reduced in Mcl-1+/−, Bcl-2+/−, and, most strikingly in Mcl-1+/−Bcl-2+/− mice. The weights of several tissues including the heart, tibialis anterior, and kidney were likewise reduced in Mcl-1+/−Bcl-2+/− mice. When lean mass and specific tissue weights were expressed relative to body weight, these differences were no longer significant, indicating that that Mcl-1+/−Bcl-2+/− mice, and to a lesser extent Mcl-1+/− and Bcl-2+/− mice, are smaller than their wild-type counterparts. Consistently, the anal-naso length was reduced in Mcl-1+/−Bcl-2+/− mice. While minor reductions in size were observed in female Mcl-1+/−Bcl-2+/− mice, these effects were most prominent in males. Notably, Mcl-1+/−Bcl-2+/− males had markedly smaller testes even after accounting for differences in body weight. Collectively, these data reveal that combined loss of a single allele of Mcl-1 and Bcl-2, while not overtly impairing organismal development, leads to a reduction in animal size.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia (GRID:grid.1042.7); The University of Melbourne, The Department of Medical Biology, Melbourne, Australia (GRID:grid.1008.9) (ISNI:0000 0001 2179 088X)
2 Baker Heart and Diabetes Institute, Melbourne, Australia (GRID:grid.1051.5) (ISNI:0000 0000 9760 5620); Monash University, Department of Immunology, Melbourne, Australia (GRID:grid.1002.3) (ISNI:0000 0004 1936 7857)
3 The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia (GRID:grid.1042.7); The University of Melbourne, The Department of Medical Biology, Melbourne, Australia (GRID:grid.1008.9) (ISNI:0000 0001 2179 088X); Blueprint Medicines, Cambridge, USA (GRID:grid.497611.c) (ISNI:0000 0004 1794 1958)