It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Efficient action control is indispensable for goal-directed behaviour. Different theories have stressed the importance of either attention or response selection sub-processes for action control. Yet, it is unclear to what extent these processes can be identified in the dynamics of neurophysiological (EEG) processes at the single-trial level and be used to predict the presence of conflicts in a given moment. Applying deep learning, which was blind to cognitive theory, on single-trial EEG data allowed to predict the presence of conflict in ~95% of subjects ~33% above chance level. Neurophysiological features related to attentional and motor response selection processes in the occipital cortex and the superior frontal gyrus contributed most to prediction accuracy. Importantly, deep learning was able to identify predictive neurophysiological processes in single-trial neural dynamics. Hence, mathematical (artificial intelligence) approaches may be used to foster the validation and development of links between cognitive theory and neurophysiology of human behavior.
Vahid et al. use a deep-learning approach to analyze single-trial EEG data to examine theories on action control. Their approach enables the identification of spatial and temporal neurophysiological features that are predictive of the response control during the Simon task. The results confirm cognitive theory-driven approaches on the relationship between neurophysiology and human behavior.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Faculty of Medicine, Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Germany
2 Otto von Guericke University Magdeburg, Artificial Intelligence Lab, Institute for Intelligent Cooperating Systems, Faculty of Computer Science, Magdeburg, Germany (GRID:grid.5807.a) (ISNI:0000 0001 1018 4307)
3 Faculty of Medicine, Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Germany (GRID:grid.5807.a)