Full text

Turn on search term navigation

© 2020 Sato et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Opsin3 (Opn3) is a transmembrane heptahelical G protein–coupled receptor (GPCR) with the potential to produce a nonvisual photoreceptive effect. Interestingly, anatomical profiling of GPCRs reveals that Opn3 mRNA is highly expressed in adipose tissue. The photosensitive functions of Opn3 in mammals are poorly understood, and whether Opn3 has a role in fat is entirely unknown. In this study, we found that Opn3-knockout (Opn3-KO) mice were prone to diet-induced obesity and insulin resistance. At the cellular level, Opn3-KO brown adipocytes cultured in darkness had decreased glucose uptake and lower nutrient-induced mitochondrial respiration than wild-type (WT) cells. Light exposure promoted mitochondrial activity and glucose uptake in WT adipocytes but not in Opn3-KO cells. Brown adipocytes carrying a defective mutation in Opn3’s putative G protein–binding domain also exhibited a reduction in glucose uptake and mitochondrial respiration in darkness. Using RNA-sequencing, we identified several novel light-sensitive and Opn3-dependent molecular signatures in brown adipocytes. Importantly, direct exposure of brown adipose tissue (BAT) to light in living mice significantly enhanced thermogenic capacity of BAT, and this effect was diminished in Opn3-KO animals. These results uncover a previously unrecognized cell-autonomous, light-sensing mechanism in brown adipocytes via Opn3-GPCR signaling that can regulate fuel metabolism and mitochondrial respiration. Our work also provides a molecular basis for developing light-based treatments for obesity and its related metabolic disorders.

Details

Title
Cell-autonomous light sensitivity via Opsin3 regulates fuel utilization in brown adipocytes
Author
Sato, Mari; Tsuji, Tadataka; Yang, Kunyan; Ren, Xiaozhi; Dreyfuss, Jonathan M; Tian Lian Huang; Wang, Chih-Hao; Shamsi, Farnaz; Leiria, Luiz O; Lynes, Matthew D; King-Wai, Yau; Yu-Hua, Tseng
First page
e3000630
Section
Research Article
Publication year
2020
Publication date
Feb 2020
Publisher
Public Library of Science
ISSN
15449173
e-ISSN
15457885
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2377702601
Copyright
© 2020 Sato et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.