It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The active components of Dracocephalum moldavica L. (TFDM) can inhibit myocardial ischemia by inhibiting oxidative stress. However, the effects of TFDM on astrocytes have not been investigated in vitro. The current study aimed to explore whether TFDM protects astrocytes against H2O2-induced apoptosis through a mitochondria-dependent pathway.
Methods
The human glioma cell line U87 was used to investigate the ability of TFDM to protect astrocytes against H2O2-induced apoptosis. The cell counting kit-8 assay and flow cytometry were used to detect cell viability, apoptosis, MMP, Ca2+ influx and reactive oxygen species (ROS). Lactate dehydrogenase (LDH) and malonic dialdehyde (MDA) levels were measured by ELISA. In addition, protein and mRNA expression changes were detected by Western blotting and qRT-PCR.
Results
TFDM (0.78~200 μg/ml) had limited cytotoxic effects on the viability of U87 cells. Compared with the model group (treated with H2O2 only), cells treated with medium- and high-dose TFDM exhibited reduced MDA concentrations (P < 0.05) and ROS production (P < 0.05) and decreased MMP (P < 0.05) and reduced apoptosis (P < 0.05). The percentage of annexin V-FITC-stained cells was markedly suppressed by TFDM, confirming its anti-apoptotic properties. WB results showed that protein expression of Bcl-2-associated X protein (BAX), Caspase-3, Caspase-9, Caspase-12, and B-cell leukemia/lymphoma 2 (Bcl2) was reduced in the TFDM group compared with that in the model group (P < 0.05) and that expression of these proteins was normalized by TFDM treatment in a dose-dependent manner. According to RT-qPCR results, TFDM pretreatment resulted in reduced mRNA expression of BAX, Caspase-9, Caspase-12, p38MAPK, and CaMKII and increased mRNA expression of mTOR compared with the model group.
Conclusions
The current study revealed the protective effects of TFDM on U87 cells under oxidative stress conditions through the inhibition of a mitochondria-dependent pathway that is associated with the CaMKII/P38MAPK/ERK1/2 and PI3K/AKT/mTOR pathways.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer