It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
This study evaluated the 3D angle between the joint moment and the joint angular velocity vectors at the intrinsic foot joints, and investigated if these joints are predominantly driven or stabilized during gait.
Methods
The participants were 20 asymptomatic subjects. A four-segment kinetic foot model was used to calculate and estimate intrinsic foot joint moments, powers and angular velocities during gait. 3D angles between the joint moment and the joint angular velocity vectors were calculated for the intrinsic foot joints defined as follows: ankle joint motion described between the foot and the shank for the one-segment foot model (hereafter referred as Ankle), and between the calcaneus and the shank for the multi-segment foot model (hereafter referred as Shank-Calcaneus); joint motion described between calcaneus and midfoot segments (hereafter referred as Chopart joint); joint motion described between midfoot and metatarsus segments (hereafter referred as Lisfranc joint); joint motion described between first phalanx and first metatarsal (hereafter referred as First Metatarso-Phalangeal joint). When the vectors were approximately aligned, the moment was considered to result in propulsion (3D angle <60o) or resistance (3D angle >120o) at the joint. When the vectors are approximately orthogonal (3D angle close to 90°), the moment was considered to stabilize the joint.
Results
The results showed that the four intrinsic joints of the foot are never fully propelling, resisting or being stabilized, but are instead subject to a combination of stabilization with propulsion or resistance during the majority of the stance phase of gait. However, the results also show that during pre-swing all four the joints are subject to moments that result purely in propulsion. At heel off, the propulsive configuration appears for the Lisfranc joint first at terminal stance, then for the other foot joints at pre-swing in the following order: Ankle, Chopart joint and First Metatarso-Phalangeal joint.
Conclusions
Intrinsic foot joints adopt a stabilized-resistive configuration during the majority of the stance phase, with the exception of pre-swing during which all joints were found to adopt a propulsive configuration. The notion of stabilization, resistance and propulsion should be further investigated in subjects with foot and ankle disorders.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer