Abstract

The complexity of the climate of the past 122;000 years and recent 2000 years was investigated by analyzing the δ18O records of ice cores based on the sample entropy (SampEn) method and Lempel-Ziv (LZ) complexity. In using SampEn method, the climate complexity is measured by the sample entropy, which is a modified approximate entropy defined in terms of the occurring probability of new modes in a record. A larger sample entropy reflects a higher probability to spot a new mode in the data, and in this sense signals a larger complexity of the sample. The δ18O record of the past 122,000-year is found to have smaller SampEn than the recent 2000-year. This result suggests that the climate of the past 122;000-year has less complexity than that of the recent 2000 years, even though the record for the former exhibits stronger fluctuations and multifractality than the latter. This diagnosis is additionally supported by calculations of LZ complexity, which has smaller value for the record of the past 122;000 years than the recent 2000 years. Our theoretical findings may further contribute to ongoing explorations into the nonlinear statistical character of the climate change.

Details

Title
RETRACTED ARTICLE: Contrasting the complexity of the climate of the past 122,000 years and recent 2000 years
Author
Zhi-Gang, Shao 1 

 South China Normal University, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, Guangzhou, China (GRID:grid.263785.d) (ISNI:0000 0004 0368 7397) 
Publication year
2017
Publication date
Dec 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2378832555
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.