Abstract
Introduction: The Real-time Position Management™ (RPM) is used as a motion management tool to reduce normal tissue complication. However, no commercial software is available to quantify the “beam-on” errors in RPM-generated breathing traces. This study aimed to develop and validate an in-house-coded MATLAB program to quantify the “beam-on” errors in the breathing trace. Materials and Methods: A graphical user interface (GUI) was developed using MATLAB (Matrix Laboratory Ra2016) software. The GUI was validated using two phantoms (Varian-gated phantom and Brainlab ET gating phantom) with three regular motion profiles. Treatment time delay was calculated using regular sinusoidal motion profile. Ten patient's irregular breathing profiles were also analyzed using this GUI. Results: The beam-on comparison between the recorded reference trace and irradiated trace profile was done in two ways: (1) beam-on time error and (2) beam-on displacement error. These errors were ≤1.5% with no statistical difference for phase- and amplitude-based treatments. The predicated amplitude levels of reference phase-based profiles, and the actual amplitude levels of amplitude-based irradiated profiles were almost equal. The average treatment time delay was 47 ± 0.003 ms. The irregular breathing profile analysis showed that the amplitude-based gating treatment was more accurate than phase based. Conclusion: The developed GUI gave the same and acceptable results for all regular profiles. These errors were due to the lag time of the linear accelerator with gating treatment. This program can be used as to quantifying the intrafraction “beam-on” errors in breathing trace with both mode of gating techniques for irregular breathing trace, and in addition, it is capable to convert phase-based gating parameters to amplitude-based gating parameters for treatment.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Deparment of Radiation Oncology, Max Super Speciality Hospital, New Delhi
2 Department of Physics, SPSB Government College, Shahpura, Rajasthan