Full Text

Turn on search term navigation

Copyright © 2020 Z. H. Lai et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

The weak-signal detection technologies based on stochastic resonance (SR) play important roles in the vibration-based health monitoring and fault diagnosis of rolling bearings, especially at their early-fault stage. Aiming at the parameter-fixed vibration signals in practical engineering, it is feasible to diagnose the potential rolling bearing faults through adaptively adjusting the SR system parameters, as well as other generalized parameters such as the amplitude-transformation coefficient and scale-transformation coefficient. However, extant adaptive adjustment methods focus on the system parameters, while the adjustments of other adjustable parameters have not been fully studied, thus limiting the detection performance of the adaptive SR method. In order to further enhance the detection performance of adaptive SR methods and extend their application in rolling bearing fault diagnosis, an adaptive multiparameter-adjusting SR (AMPASR) method for bistable systems based on particle swarm optimization (PSO) algorithm is proposed in this paper. This method can produce optimal SR output through adaptively adjusting multiparameters, thus realizing fault feature extraction and further fault diagnosis. Furthermore, the influence of algorithm parameters on the optimization results is discussed, and the optimization results of the Langevin system and the Duffing system are compared. Finally, we propose a weak-signal detection method based on the AMPASR of the Duffing system and employ three diagnosis examples involving inner ring fault, outer ring fault, and rolling element fault diagnoses to demonstrate its feasibility in rolling bearing fault diagnosis.

Details

Title
Rolling Bearing Fault Diagnosis Based on Adaptive Multiparameter-Adjusting Bistable Stochastic Resonance
Author
Lai, Z H 1   VIAFID ORCID Logo  ; Wang, S B 1 ; Zhang, G Q 1   VIAFID ORCID Logo  ; Zhang, C L 2 ; Zhang, J W 2 

 Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China 
 School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China 
Editor
Franco Concli
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2381569744
Copyright
Copyright © 2020 Z. H. Lai et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/