It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Standard functional assessment of autonomic nervous system (ANS) activity on cardiovascular control relies on spectral analysis of heart rate variability (HRV) series. However, difficulties in obtaining a reliable measure of sympathetic activity from HRV spectra limits the exploitation of sympatho-vagal metrics. On the other hand, measures of electrodermal activity (EDA) have been demonstrated to provide a reliable quantifier of sympathetic dynamics. In this study we propose novel indices of phasic autonomic regulation mechanisms by combining HRV and EDA correlates and thoroughly investigating their time-varying dynamics. HRV and EDA series were gathered from 26 healthy subjects during a cold-pressor test and emotional stimuli. Instantaneous linear and nonlinear (bispectral) estimates of vagal dynamics were obtained from HRV through inhomogeneous point-process models, and combined with a sensitive maker of sympathetic tone from EDA spectral power. A wavelet decomposition analysis was applied to estimate phasic components of the proposed sympatho-vagal indices. Results show significant statistical differences for the proposed indices between the cold-pressor elicitation and previous resting state. Furthermore, an accuracy of 73.08% was achieved for the automatic emotional valence recognition. The proposed nonlinear processing of phasic ANS markers brings novel insights on autonomic functioning that can be exploited in the field of affective computing and psychophysiology.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 University of Pisa, Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, Pisa, Italy (GRID:grid.5395.a) (ISNI:0000 0004 1757 3729)
2 Politecnico di Milano, Department of Electronics, Informatics and Bioengineering, Milano, Italy (GRID:grid.4643.5) (ISNI:0000 0004 1937 0327)