It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Electron-phonon (e–ph) interactions are usually treated in the lowest order of perturbation theory. Here we derive next-to-leading order e–ph interactions, and compute from first principles the associated electron-two-phonon (2ph) scattering rates. The derivations involve Matsubara sums of two-loop Feynman diagrams, and the numerical calculations are challenging as they involve Brillouin zone integrals over two crystal momenta and depend critically on the intermediate state lifetimes. Using Monte Carlo integration together with a self-consistent update of the intermediate state lifetimes, we compute and converge the 2ph scattering rates, and analyze their energy and temperature dependence. We apply our method to GaAs, a weakly polar semiconductor with dominant optical-mode long-range e–ph interactions. We find that the 2ph scattering rates are as large as nearly half the value of the one-phonon rates, and that including the 2ph processes is necessary to accurately predict the electron mobility in GaAs from first principles.
Electron-phonon scattering plays a decisive role in electron transport and is taken into account in ab initio calculations by leading-order perturbations involving scattering events with one phonon. Here, the authors show that higher-order effects are comparable in magnitude to the leading order in polar semiconductors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 California Institute of Technology, Department of Applied Physics and Materials Science, Pasadena, USA (GRID:grid.20861.3d) (ISNI:0000000107068890); California Institute of Technology, Department of Physics, Pasadena, USA (GRID:grid.20861.3d) (ISNI:0000000107068890)
2 California Institute of Technology, Department of Applied Physics and Materials Science, Pasadena, USA (GRID:grid.20861.3d) (ISNI:0000000107068890)