Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ultra wide band (UWB)-based real-time location systems (RTLSs) have been widely adopted in the manufacturing industry for tracking tools, materials, and ensuring safety. Researchers in the construction domain have investigated similar uses for UWB-based RTLSs on construction jobsites. However, most of these investigations comprised small-scale experiments using average accuracy only to demonstrate use cases for the technology. Furthermore, they did not consider alternative deployment scenarios for practically feasible deployment of the technology. To overcome these limitations, a series of experiments were performed to study the feasibility of a commercially available RTLS on the construction jobsites. The focus of the work was on feasibility in terms of accuracy analysis of the system for a large experimental site, the level of effort requirements for deployment, and the impact of deployment alternatives on the accuracy of the system. The results found that average accuracy was found to be a misleading indicator of the perceived system performance (i.e., 95th percentile values were considerably higher than average values). Moreover, accuracy is significantly affected by the deployment alternatives. Collectively, the results arising from the study could help construction/safety managers in decision making related to the deployment of UWB-based RTLSs for their construction sites.

Details

Title
Use of Ultra Wide Band Real-Time Location System on Construction Jobsites: Feasibility Study and Deployment Alternatives
Author
Umer, Waleed 1   VIAFID ORCID Logo  ; Siddiqui, Mohsin K 2 

 Department of Construction Engineering & Management, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia 
 Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA; [email protected] 
First page
2219
Publication year
2020
Publication date
2020
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2384572247
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.