Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Renewable energy systems and electric vehicles (EVs) are receiving much attention in industrial and scholarly communities owing to their roles in reducing pollutant emissions. Integrated energy systems (IES), which connect different types of renewable energies and storages, have become common in many applications, such as the grid-connected photovoltaic (PV) and battery systems, fuel cells and battery/supercapacitor in EVs. The advantages of all energy sources are maximized by utilizing connection and control strategies. Because many storage systems and household loads are mainly direct current (DC) types, the DC grid has considerable potential for increasing the efficiency of distribution grids in the future. In IES and future DC grid systems, the triple active bridge (TAB) converter is an isolated bidirectional DC-DC converter that has many advantages as a core circuit. Therefore, this paper reviews the characteristics of the TAB converter in current applications and suggests next-generation applications. First, the characteristics and operation modes of the TAB converter are introduced. An overview of all current applications of the TAB converter is then presented. The advantages and challenges of the TAB converter in each application are discussed. Thereafter, the potential future applications of the TAB converter with an adaptable power transmission design are presented.

Details

Title
Applications of Triple Active Bridge Converter for Future Grid and Integrated Energy Systems
Author
Van-Long, Pham  VIAFID ORCID Logo  ; Wada, Keiji  VIAFID ORCID Logo 
First page
1577
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2386101107
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.