It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Laser-driven positron production is expected to provide a non-radioactive, controllable, radiation tunable positron source in laboratories. We propose a novel approach of positron production by using a femto-second laser irradiating a microstructured surface target combined with a high-Z converter. By numerical simulations, it is shown that both the temperature and the maximum kinetic energy of electrons can be greatly enhanced by using a microstructured surface target instead of a planar target. When these energetic electrons shoot into a high Z converter, copious positrons are produced via Bethe-Heitler mechanism. With a laser (wavelength λ = 1 μm) with duration ~36 fs, intensity ~5.5 × 1020 W/cm2 and energy ~6 Joule, ~109 positrons can be obtained.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Physics, National University of Defense Technology, Changsha, China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110)
2 Department of Physics, National University of Defense Technology, Changsha, China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110); Institute of Applied Physics and Computational Mathematics, Beijing, China (GRID:grid.418809.c) (ISNI:0000 0000 9563 2481)