Abstract

Many transition metal oxides (TMOs) are Mott insulators due to strong Coulomb repulsion between electrons, and exhibit metal-insulator transitions (MITs) whose mechanisms are not always fully understood. Unlike most TMOs, minute doping in CaMnO3 induces a metallic state without any structural transformations. This material is thus an ideal platform to explore band formation through the MIT. Here, we use angle-resolved photoemission spectroscopy to visualize how electrons delocalize and couple to phonons in CaMnO3. We show the development of a Fermi surface where mobile electrons coexist with heavier carriers, strongly coupled polarons. The latter originate from a boost of the electron-phonon interaction (EPI). This finding brings to light the role that the EPI can play in MITs even caused by purely electronic mechanisms. Our discovery of the EPI-induced dichotomy of the charge carriers explains the transport response of Ce-doped CaMnO3 and suggests strategies to engineer quantum matter from TMOs.

The underlying mechanisms of the metal-insulator transition in correlated oxides are a rich source of interesting physics and a topic of long-standing investigation. Here, the authors use angle-resolved photoelectron spectroscopy to investigate changes in charge carrier properties and electron-phonon interactions as a function of Ce-doping across the metal-insulator transition in CaMnO3.

Details

Title
Electron-polaron dichotomy of charge carriers in perovskite oxides
Author
M-A, Husanu 1   VIAFID ORCID Logo  ; Vistoli, L 2 ; Verdi, C 3   VIAFID ORCID Logo  ; Sander, A 2   VIAFID ORCID Logo  ; Garcia, V 2   VIAFID ORCID Logo  ; Rault, J 4 ; Bisti, F 5   VIAFID ORCID Logo  ; Lev, L L 6 ; Schmitt, T 5 ; Giustino, F 7 ; Mishchenko, A S 8 ; Bibes, M 2 ; Strocov, V N 5 

 Paul Scherrer Institute, Swiss Light Source, Villigen-PSI, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501); National Institute of Materials Physics, Magurele, Romania (GRID:grid.443870.c) (ISNI:0000 0004 0542 4064) 
 Université Paris-Sud, Université Paris-Saclay, Unité Mixte de Physique, CNRS, Thales, Palaiseau, France (GRID:grid.5842.b) (ISNI:0000 0001 2171 2558) 
 University of Oxford, Department of Materials, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948); University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria (GRID:grid.10420.37) (ISNI:0000 0001 2286 1424) 
 Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, BP 48, Gif-sur-Yvette, France (GRID:grid.426328.9) 
 Paul Scherrer Institute, Swiss Light Source, Villigen-PSI, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501) 
 Moscow Institute of Physics and Technology, Dolgoprudny, Russia (GRID:grid.18763.3b) (ISNI:0000000092721542) 
 University of Oxford, Department of Materials, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948); University of Texas at Austin, Oden Institute for Computational Engineering and Sciences, Austin, USA (GRID:grid.89336.37) (ISNI:0000 0004 1936 9924); The University of Texas at Austin, Department of Physics, Austin, USA (GRID:grid.89336.37) (ISNI:0000 0004 1936 9924) 
 RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan (GRID:grid.474689.0); National Research Center “Kurchatov Institute”, Moscow, Russia (GRID:grid.18919.38) (ISNI:0000000406204151) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
23993650
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2386366016
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.