Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Engineered nanoparticles have recently been used for innovation in agricultural disease management. However, both the toxicity effects and mechanisms of nanoparticles in target pathogens and their host plants are still largely unknown. Here, we found that magnesium oxide nanoparticles (MgO NPs) could protect potatoes against Phytophthora infestans (P. infestans) at a low dosage (50 μg/mL). Through scanning electron microscopy observation, antioxidant enzymes activity measurement, and gene transcriptome analysis, we found that the cell surfaces of P. infestans were destroyed, endogenous superoxide dismutase continuously remained in a higher active state, oxidoreductase activity-related gene ontology (GO) terms were enriched with upregulation, and transporter-activity related GO terms and six essential metabolism-related pathways were enriched with downregulation in P. infestans after 30 min MgO NPs treatment, whereas only 89 genes were changed without enriched GO and pathways terms, and no change in antioxidant activities and phenylalnine ammonialyase in potato appeared at 6 h post-MgO NPs treatment. Only the “plant hormone signal transduction pathway” was enriched with upregulation under differential expression analysis in potatoes. In conclusion, cell surface distortion, continuous oxidative stress, and inhibitions of membrane transport activity and metabolic pathways were toxic mechanisms of Mg ONPs in P. infestans, and the “plant hormone signal transduction pathway” was potentially regulated by Mg-ONPs without obviously harmful effects on potato after Mg ONPs exposure.

Details

Title
Toxicity Effects and Mechanisms of MgO Nanoparticles on the Oomycete Pathogen Phytophthora infestans and Its Host Solanum tuberosum
Author
Wang, Ze-Le 1 ; Zhang, Xi 2 ; Guang-Jin Fan 1 ; Que, Yi 3 ; Xue, Feng 4 ; Ying-Hong, Liu 1 

 College of Plant Protection, Southwest University, Chongqing 400715, China 
 Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China 
 Chongqing Metropolitan College of Science and Technology, Chongqing 402167, China 
 Hanbin Branch of Ankang Tobacco Company, Ankang 725000, China 
First page
553
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23056304
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728532793
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.