Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Energy regeneration systems are a key factor for improving energy efficiency in electrohydraulic machinery. This paper is focused on the study of electric energy storage systems (EESS) and hydraulic energy storage systems (HESS) for energy regeneration applications. Two test benches were designed and implemented to compare the performance of the systems under similar operating conditions. The electrical system was configured with a set of ultracapacitors, and the hydraulic system used a hydraulic accumulator. Both systems were designed to have the same energy storage capacity. Charge and discharge cycle experiments were performed for the two systems in order to compare their power density, energy density, cost, and efficiency. According to the experimentally obtained results, the power density in the hydraulic accumulator was 21.7% higher when compared with the ultracapacitors. Moreover, the cost/power ($/Watt) ratio in the hydraulic accumulator was 2.9 times smaller than a set of ultracapacitors of the same energy storage capacity. On the other hand, the energy density in the set of ultracapacitors was 9.4 times higher, and the cost/energy ($/kWh) ratio was 2.9 times smaller when compared with the hydraulic accumulator. Under the tested conditions, the estimated overall energy efficiency for the hydraulic accumulator was 87.7%, and the overall energy efficiency for the ultracapacitor was 78.7%.

Details

Title
Energy Efficiency Comparison of Hydraulic Accumulators and Ultracapacitors
Author
Leon-Quiroga, Jorge; Newell, Brittany; Krishnamurthy, Mahesh; Gonzalez-Mancera, Andres  VIAFID ORCID Logo  ; Garcia-Bravo, Jose  VIAFID ORCID Logo 
First page
1632
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2386654629
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.