Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The incipient fault detection technology of rolling bearings is the key to ensure its normal operation and is of great significance for most industrial processes. However, the vibration signals of rolling bearings are a set of time series with non-linear and timing correlation, and weak incipient fault characteristics of rolling bearings bring about obstructions for the fault detection. This paper proposes a nonlinear dynamic incipient fault detection method for rolling bearings to solve these problems. The kernel function and the moving window algorithm are used to establish a non-linear dynamic model, and the real-time characteristics of the system are obtained. At the same time, the deep decomposition method is used to extract weak fault characteristics under the strong noise, and the incipient failures of rolling bearings are detected. Finally, the validity and feasibility of the scheme are verified by two simulation experiments. Experimental results show that the fault detection rate based on the proposed method is higher than 85% for incipient fault of rolling bearings, and the detection delay is almost zero. Compared with the detection performance of traditional methods, the proposed nonlinear dynamic incipient fault detection method is of better accuracy and applicability.

Details

Title
Research on a Nonlinear Dynamic Incipient Fault Detection Method for Rolling Bearings
Author
Shi, Huaitao; Guo, Jin  VIAFID ORCID Logo  ; Bai, Xiaotian  VIAFID ORCID Logo  ; Guo, Lei; Liu, Zhenpeng; Sun, Jie  VIAFID ORCID Logo 
First page
2443
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2387493161
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.