Full text

Turn on search term navigation

© 2020 Ren et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fault localization, a technique to fix and ensure the dependability of software, is rapidly becoming infeasible due to the increasing scale and complexity of multilingual programs. Compared to other fault localization techniques, slicing can directly narrow the range of the code which needed checking by abstracting a program into a reduced one by deleting irrelevant parts. Only minority slicing methods take into account the fact that the probability of different statements leading to failure is different. Moreover, no existing prioritized slicing techniques can work on multilingual programs. In this paper, we propose a new technique called weight prioritized slicing(WP-Slicing), an improved static slicing technique based on constraint logic programming, to help the programmer locate the fault quickly and precisely. WP-Slicing first converts the original program into logic facts. Then it extracts dependences from the facts, computes the static backward slice and calculates the statements’ weight. Finally, WP-Slicing provides the slice in a suggested check sequence by weighted-sorting. By comparing it’s slice time and locate effort with three pre-exsiting slicing techniques on five real world C projects, we prove that WP-Slicing can locate fault within less time and effort, which means WP-Slicing is more effectively.

Details

Title
Weight prioritized slicing based on constraint logic programming for fault localization
Author
Ren, Shengbing; Zhou, Weijia; Zhou, Haiwei; Xia, Lei
First page
e0231331
Section
Research Article
Publication year
2020
Publication date
Apr 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2388310649
Copyright
© 2020 Ren et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.