It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Accurate, simple and non-invasive tools are needed for efficient screening of abnormal glu-cose tolerance (AGT) and educating the general public.
Aim
To develop a neural network-based initial screening and educational model for AGT.
Data and methods
230 subjects with AGT and 3,243 subjects with normal glucose tolerance (NGT) were allocated into training, validation and test sets using stratified randomization. The ratios of AGT versus NGT in three groups were 150:50, 30:570 and 50:950, respectively. A feed-forward neural network (FFNN) was trained to predict 2-hour plasma glucose of 75 g Oral Glucose Tolerance Test (OGTT) using age, family history of diabetes, weight, height, waist and hip circumference. The screening performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC) and the partial AUC (in the range of false positive rates between 35 and 65%) and compared to those from logistic regression, linear regression and ADA Risk Test.
Results
Sensitivity, specificity, accuracy and percentage that needed further testing at 7.2 mmol/L in test group were 90.0%(95%CI: 78.6 to 95.7%), 47.7% (95%CI: 44.5 to 50.9%), 49.8% (95%CI: 46.7 to 52.9%) and 54.2% (95%CI: 51.1 to 57.3%) respectively. The entire and partial AUCs were 0.70 (95%CI: 0.62 to 0.78) and 0.26 (95%CI: 0.22 to 0.30). The partial AUC of the NN was higher than those of logistic regression (p = 0.06), linear regression (p = 0.06) and ADA Risk Test (P = 0.006).
Conclusion
NN can be used as a high-sensitive and non-invasive initial screening and educational tool for AGT.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer