Abstract

Image-based high-throughput screening strategies for quantifying morphological phenotypes have proven widely successful. Here we describe a combined experimental and multivariate image analysis approach for systematic large-scale phenotyping of morphological dynamics in bacteria. Using off-the-shelf components and software, we established a workflow for high-throughput time-resolved microscopy. We then screened the single‐gene deletion collection of Escherichia coli for antibiotic-induced morphological changes. Using single-cell quantitative descriptors and supervised classification methods, we measured how different cell morphologies developed over time for all strains in response to the β-lactam antibiotic cefsulodin. 191 strains exhibit significant variations under antibiotic treatment. Phenotypic clustering provided insights into processes that alter the antibiotic response. Mutants with stable bulges show delayed lysis, contributing to antibiotic tolerance. Lipopolysaccharides play a crucial role in bulge stability. This study demonstrates how multiparametric phenotyping by high-throughput time-resolved imaging and computer-aided cell classification can be used for comprehensively studying dynamic morphological transitions in bacteria.

In a high-throughput time-resolved microscopy screen, Taiyeb Zahir et al identify bacterial genes mediating morphological changes to antibiotics. An image analysis workflow enables the classification of single cells and deletion strains according to morphological changes.

Details

Title
High-throughput time-resolved morphology screening in bacteria reveals phenotypic responses to antibiotics
Author
Taiyeb, Zahir 1 ; Camacho, Rafael 2   VIAFID ORCID Logo  ; Vitale Raffaele 3   VIAFID ORCID Logo  ; Ruckebusch Cyril 4   VIAFID ORCID Logo  ; Hofkens Johan 2 ; Fauvart Maarten 5 ; Michiels, Jan 1   VIAFID ORCID Logo 

 KU Leuven—University of Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium (GRID:grid.5596.f) (ISNI:0000 0001 0668 7884); VIB-KU Leuven Center of Microbiology, Leuven, Belgium (GRID:grid.5596.f) 
 KU Leuven—University of Leuven, Department of Chemistry, Leuven, Belgium (GRID:grid.5596.f) (ISNI:0000 0001 0668 7884) 
 KU Leuven—University of Leuven, Department of Chemistry, Leuven, Belgium (GRID:grid.5596.f) (ISNI:0000 0001 0668 7884); Université de Lille, LASIR CNRS, Lille, France (GRID:grid.503422.2) (ISNI:0000 0001 2242 6780) 
 Université de Lille, LASIR CNRS, Lille, France (GRID:grid.503422.2) (ISNI:0000 0001 2242 6780) 
 KU Leuven—University of Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium (GRID:grid.5596.f) (ISNI:0000 0001 0668 7884); VIB-KU Leuven Center of Microbiology, Leuven, Belgium (GRID:grid.5596.f); imec, Leuven, Belgium (GRID:grid.15762.37) (ISNI:0000 0001 2215 0390) 
Publication year
2019
Publication date
2019
Publisher
Nature Publishing Group
e-ISSN
23993642
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2389680439
Copyright
© The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.