It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Metal sulfide materials serve as environment-friendly, sustainable, and effective electrode materials for green-energy storage systems. However, their capacity-fading issues related to low electrical conductivity and drastic volume changes during electrochemical cycling have generally limited their application to sodium ion batteries. Here we show that with the combination of an ether-based NaPF6/diglyme electrolyte, the dandelion-shaped manganese sulfide electrode displays enhanced reversible capacity, cycle life, and rate capability. The capacity of 340 mAh g−1 is maintained over more than 1000 cycles at a current density of 5.0 A g−1. Furthermore, discharge capacities of 277 and 230 mAh g−1 at 10 and 20 A g−1 current densities, respectively, are obtained. Our work demonstrates the formation of a protective solid electrolyte interface layer along the surface of the primary seed particle that limits polysulfide dissolution and hence the preservation of the active material during reaction with sodium.
Metal sulfide batteries suffer from low electrical conductivity which limits their application in sodium ion batteries. Here, the authors report a manganese sulfide anode in sodium ion batteries with capacity of 340 mAh g−1 maintained over more than 1000 cycles at a current density of 5.0 A g−1.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chonnam National University, Department of Materials Science and Engineering, Gwangju, South Korea (GRID:grid.14005.30) (ISNI:0000 0001 0356 9399)
2 Hanyang University, Department of Energy Engineering, Seoul, South Korea (GRID:grid.49606.3d) (ISNI:0000 0001 1364 9317)
3 Pusan National University, Global Frontier Center for Hybrid Interface Materials, Busan, South Korea (GRID:grid.262229.f) (ISNI:0000 0001 0719 8572); Pusan National University, School of Materials Science and Engineering, Busan, South Korea (GRID:grid.262229.f) (ISNI:0000 0001 0719 8572)