Abstract

Heralded single-photon sources with on-demand readout are a key enabling technology for distributed photonic networks. Such sources have been demonstrated in both cryogenic solid-state and cold-atoms systems. Practical long-distance quantum communication may benefit from using technologically simple systems such as room-temperature atomic vapours. However, atomic motion has so far limited the single-excitation lifetime in such systems to the microsecond range. Here we demonstrate efficient heralding and readout of single collective excitations created in warm caesium vapour. Using the principle of motional averaging we achieve a collective excitation lifetime of 0.27 ± 0.04 ms, two orders of magnitude larger than previously achieved for single excitations in room-temperature sources. We experimentally verify non-classicality of the light-matter correlations by observing a violation of the Cauchy-Schwarz inequality with R = 1.4 ± 0.1 > 1. Through spectral and temporal analysis we investigate the readout noise that limits single-photon operation of the source.

Quantum communications rely on efficient quantum networks, which have been improved by quantum memory schemes. The paper reports on an experimental progress towards a heralded single photon source using a warm vapour cell, and demonstrates the feasibility of a quantum repeater scheme at room temperature.

Details

Title
Long-lived non-classical correlations towards quantum communication at room temperature
Author
Zugenmaier, Michael 1 ; Dideriksen, Karsten B 1   VIAFID ORCID Logo  ; Sørensen, Anders S 1   VIAFID ORCID Logo  ; Albrecht, Boris 1 ; Polzik, Eugene S 1   VIAFID ORCID Logo 

 University of Copenhagen, Niels Bohr Institute, Copenhagen, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X) 
Publication year
2018
Publication date
2018
Publisher
Nature Publishing Group
e-ISSN
23993650
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2389692701
Copyright
© The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.