It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Transformers reduce the voltage from overhead powerlines to voltages acceptable for city/neighbourhood needs. Overheating of transformer cooling fluids presents a serious hazard. In this work, the risk of fires and explosions due to vaporisation of the hydrocarbon components of mineral oil, which is used as a transformer cooling fluid in electrical substations, was investigated. The compositions of new and used mineral oil from an electrical substation in Riyadh were analysed using gas chromatography–mass spectrometry, and C6 to C41 hydrocarbons were detected. The majority of the components were alkanes, alkenes, or alkynes; some ketone, alcohol, aromatic, and anhydride species were also detected. Approximately 25% of the compounds comprising the new oil sample were alkanes, whereas more than 33% of the used oil sample components were alkanes. The lower and upper flammability limits (LFL and UFL) of the mixtures were found to be 0.88 and 5.75 vol.% for the new oil and 0.47 and 3.05 vol.% for the used oil, respectively. These values were used to construct a flammability diagram. The results indicated that the new and used oil vapour mixtures were not flammable at 25 °C and 1 atm, but would become flammable at 77 and 115 °C.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 King Saud University, Department of Chemical Engineering, Riyadh, Saudi Arabia (GRID:grid.56302.32) (ISNI:0000 0004 1773 5396)
2 King Saud University, Department of Chemical Engineering, Riyadh, Saudi Arabia (GRID:grid.56302.32) (ISNI:0000 0004 1773 5396); (ERIC), Fellow, King Abdullah City for Renewable and Atomic Energy: Energy Research and Innovation Center, Riyadh, Saudi Arabia (GRID:grid.56302.32)