It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Resolving the microscopic pairing mechanism and its experimental identification in unconventional superconductors is among the most vexing problems of contemporary condensed matter physics. We show that Raman spectroscopy provides an avenue towards this aim by probing the structure of the pairing interaction at play in an unconventional superconductor. As we study the spectra of the prototypical Fe-based superconductor Ba1−xKxFe2As2 for 0.22 ≤ x ≤ 0.70 in all symmetry channels, Raman spectroscopy allows us to distill the leading s-wave state. In addition, the spectra collected in the B1g symmetry channel reveal the existence of two collective modes which are indicative of the presence of two competing, yet sub-dominant, pairing tendencies of symmetry type. A comprehensive functional Renormalization Group and random-phase approximation study on this compound confirms the presence of the two sub-leading channels, and consistently matches the experimental doping dependence of the related modes. The consistency between the experimental observations and the theoretical modeling suggests that spin fluctuations play a significant role in superconducting pairing.
Iron-based superconductors: competing pairing interactions
Two collective Raman modes are observed in an iron-based superconductor, indicative of the presence of two competing pairing tendencies alongside the dominant s-wave state. An international team led by R. Hackl from the Walther Meissner Institut perform Raman spectroscopy measurements to probe the structure of pairing interactions in Ba1−xKxFe2As2 for 0.22 ≤ x ≤ 0.70 for all symmetry channels. The Raman spectra not only shows the dominant peak marking the dominant s-wave superconducting pairing state, but also reveals the existence of two collective modes in the B1g symmetry channel, indicative of two competing, sub-dominant, paring tendencies of symmetry type. Numerical calculations confirm the finding and consistently match the doping dependencies of the related modes. The results suggest a significant role of spin-fluctuations in superconducting pairing.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Bayerische Akademie der Wissenschaften, Walther Meissner Institut, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517); Technische Universität München, Fakultät für Physik E23, Garching, Germany (GRID:grid.6936.a) (ISNI:0000000123222966); SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771); TNG Technology Consulting GmbH, Unterföhring, Germany (GRID:grid.445003.6)
2 Bayerische Akademie der Wissenschaften, Walther Meissner Institut, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517); Technische Universität München, Fakultät für Physik E23, Garching, Germany (GRID:grid.6936.a) (ISNI:0000000123222966); Intel Mobile Communications, Neubiberg, Germany (GRID:grid.425153.4) (ISNI:0000 0004 1796 6549)
3 Bayerische Akademie der Wissenschaften, Walther Meissner Institut, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517); Technische Universität München, Fakultät für Physik E23, Garching, Germany (GRID:grid.6936.a) (ISNI:0000000123222966)
4 Bayerische Akademie der Wissenschaften, Walther Meissner Institut, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517); Technische Universität München, Fakultät für Physik E23, Garching, Germany (GRID:grid.6936.a) (ISNI:0000000123222966); Schreinerei Kugler, Neuburg, Germany (GRID:grid.6936.a)
5 Bayerische Akademie der Wissenschaften, Walther Meissner Institut, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517); Technische Universität München, Fakultät für Physik E23, Garching, Germany (GRID:grid.6936.a) (ISNI:0000000123222966); University of Toledo, School of Solar and Advanced Renewable Energy, Toledo, USA (GRID:grid.267337.4) (ISNI:0000 0001 2184 944X)
6 University of Würzburg, Theoretical Physics, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658)
7 Stanford University, Department of Physics, McCullough Building, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956)
8 Oak Ridge National Laboratory, Center for Nanophase Materials Sciences and Computational Sciences and Engineering Division, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659)
9 SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771)
10 SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771); Stanford University, Geballe Laboratory for Advanced Materials, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956)
11 University of California, Physics Department, Santa Barbara, USA (GRID:grid.133342.4) (ISNI:0000 0004 1936 9676)
12 University of Florida, Department of Physics, Gainesville, USA (GRID:grid.15276.37) (ISNI:0000 0004 1936 8091)
13 Institut für Festkörperphysik, Karlsruher Institut für Technologie, Karlsruhe, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874)
14 Nanjing University, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X)
15 Bayerische Akademie der Wissenschaften, Walther Meissner Institut, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517)