Abstract
Background
Protein-protein interactions (PPIs) are fundamental in many biological processes and understanding these interactions is key for a myriad of applications including drug development, peptide design and identification of drug targets. The biological data deluge demands efficient and scalable methods to characterize and understand protein-protein interfaces. In this paper, we present ppiGReMLIN, a graph based strategy to infer interaction patterns in a set of protein-protein complexes. Our method combines an unsupervised learning strategy with frequent subgraph mining in order to detect conserved structural arrangements (patterns) based on the physicochemical properties of atoms on protein interfaces. To assess the ability of ppiGReMLIN to point out relevant conserved substructures on protein-protein interfaces, we compared our results to experimentally determined patterns that are key for protein-protein interactions in 2 datasets of complexes, Serine-protease and BCL-2.
Results
ppiGReMLIN was able to detect, in an automatic fashion, conserved structural arrangements that represent highly conserved interactions at the specificity binding pocket of trypsin and trypsin-like proteins from Serine-protease dataset. Also, for the BCL-2 dataset, our method pointed out conserved arrangements that include critical residue interactions within the conserved motif LXXXXD, pivotal to the binding specificity of BH3 domains of pro-apoptotic BCL-2 proteins towards apoptotic suppressors. Quantitatively, ppiGReMLIN was able to find all of the most relevant residues described in literature for our datasets, showing precision of at least 69% up to 100% and recall of 100%.
Conclusions
ppiGReMLIN was able to find highly conserved structures on the interfaces of protein-protein complexes, with minimum support value of 60%, in datasets of similar proteins. We showed that the patterns automatically detected on protein interfaces by our method are in agreement with interaction patterns described in the literature.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




