Abstract

Aim

A hallmark of classical conditioning is that conditioned stimulus (CS) must be tightly coupled with unconditioned stimulus (US), often requiring temporal overlap between the two, or a short gap of several seconds. In this study, we investigate the temporal requirements for fear conditioning association between a strong artificial CS, high-frequency optogenetic activation of inputs into the lateral amygdala of rats, and a foot-shock to the animal with delays up to many minutes.

Methods

AAV-oChIEF-tdTomato viruses were injected into the auditory cortex and the medial geniculate nucleus of rats. An optical fiber was implanted just above the lateral amygdala of the animal. Optogenetic high-frequency stimuli (oHFS; containing five 1-s trains of 100 Hz laser pulses) were delivered to the lateral amygdala, before or after (with varying intervals) a foot-shock that elicits fear responses in the animal. Pre-trained lever-press behavior was used to assess the degree of fear recall by optogenetic test stimuli (OTS; 10 Hz for 2 min) 24 h after the association experiment.

Results

In contrast to the tight temporal requirement for classical conditioning with paired optogenetic moderate-frequency stimuli (oMFS; 10 Hz for 20 s) and foot-shock, oHFS followed by foot-shock with a 5-min or even 1-h (but not 3-h) interval could successfully establish an association to be recalled by OTS the next day. Meanwhile, foot-shock followed by oHFS with a 5-min (but not 1-h) interval could also establish the conditioning. Thus, distant association may be formed between temporally distant stimuli when the CS is strong.

Details

Title
High frequency optogenetic activation of inputs to the lateral amygdala forms distant association with foot-shock
Author
Li, Fei; Chun-Hui, Jia; Huang, Jun; Guo-Qiang Bi; Pak-Ming Lau
Pages
1-4
Section
Micro report
Publication year
2020
Publication date
2020
Publisher
BioMed Central
e-ISSN
1756-6606
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2391494068
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.