Full text

Turn on search term navigation

Copyright © 2020 Yanqun Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Concrete mixtures consisting of nanomaterials and fly ash have been shown to be effective for improving the performance of concrete. This study investigates the combined effects of nano-CaCO3 and fly ash on the mechanical properties and durability of concrete; the mix proportion is optimized through orthogonal experiments. In the first phase, nine concrete mixtures were prepared with three water-to-binder ratios (0.4, 0.5, and 0.6), three fly ash contents (15%, 20%, and 25% replacement of the cement weight), and three nano-CaCO3 contents (1%, 2%, and 3% replacement of the cement weight). Based on the orthogonal analysis, the optimal concrete mix proportion was determined as a water-to-binder ratio of 0.4, 20% fly ash, and 1% nano-CaCO3. In the second phase, further investigations were carried out to examine the superiority of the optimal concrete and evaluate the synergistic effect of nano-CaCO3 and fly ash. The results showed that nano-CaCO3 contributed to increasing the compressive strength of fly ash concrete at the early ages, but its effect was quite limited at later ages. Furthermore, the scanning electron microscopy analysis revealed that the seeding effect, filling effect, and pozzolanic effect were the primary mechanisms for the improvement of concrete performance.

Details

Title
Effect of Nano-CaCO3 on the Mechanical Properties and Durability of Concrete Incorporating Fly Ash
Author
Sun, Yanqun  VIAFID ORCID Logo  ; Zhang, Peng  VIAFID ORCID Logo  ; Guo, Weina; Bao, Jiuwen; Qu, Chengping
Editor
Ivan Giorgio
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2391837971
Copyright
Copyright © 2020 Yanqun Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/