Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, an all-solid-state nitrate doped polypyrrole (PPy(NO3) ion-selective electrode (ISE) was prepared with a nanohybrid composite film of gold nanoparticles (AuNPs) and electrochemically reduced graphene oxide (ERGO). Preliminary tests on the ISE based in-situ soil nitrate–nitrogen (NO3-N) monitoring was conducted in a laboratory 3-stage column. Comparisons were made between the NO3-N content of in-situ soil percolate solution and laboratory-prepared extract solution. Possible influential factors of sample depth, NO3-N content, soil texture, and moisture were varied. Field-emission scanning electron microscopy (FESEM) and X-ray powder diffraction (XRD) characterized morphology and content information of the composite film of ERGO/AuNPs. Due to the performance excellence for conductivity, stability, and hydrophobicity, the ISE with ERGO/AuNPs illustrates an acceptable detection range from 10−1 to 10−5 M. The response time was determined to be about 10 s. The lifetime was 65 days, which revealed great potential for the implementation of the ERGO/AuNPs mediated ISE for in-situ NO3-N monitoring. In-situ NO3-N testing results conducted by the all-solid-state ISE followed a similar trend with the standard UV-VIS method.

Details

Title
An All-Solid-State Nitrate Ion-Selective Electrode with Nanohybrids Composite Films for In-Situ Soil Nutrient Monitoring
Author
Chen, Ming; Zhang, Miao; Wang, Xuming; Yang, Qingliang; Wang, Maohua; Liu, Gang; Yao, Lan
First page
2270
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2392287005
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.