It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Summer 2019 observations show a rapid resurgence of the Blob-like warm sea surface temperature (SST) anomalies that produced devastating marine impacts in the Northeast Pacific during winter 2013/2014. Unlike the original Blob, Blob 2.0 peaked in the summer, a season when little is known about the physical drivers of such events. We show that Blob 2.0 primarily results from a prolonged weakening of the North Pacific High-Pressure System. This reduces surface winds and decreases evaporative cooling and wind-driven upper ocean mixing. Warmer ocean conditions then reduce low-cloud fraction, reinforcing the marine heatwave through a positive low-cloud feedback. Using an atmospheric model forced with observed SSTs, we also find that remote SST forcing from the central equatorial and, surprisingly, the subtropical North Pacific Ocean contribute to the weakened North Pacific High. Our multi-faceted analysis sheds light on the physical drivers governing the intensity and longevity of summertime North Pacific marine heatwaves.
Marine heatwaves are threatening ocean ecosystems with increasing frequency, but their seasonal drivers are unknown. Here, the authors determine that summertime blobs of warm temperature anomalies in the Pacific occur as a result of prolonged weakening in the North Pacific High-Pressure System.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 University of Colorado Boulder, Cooperative Institute for Research in Environmental Sciences, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564); University of Colorado Boulder, Department of Atmospheric and Oceanic Sciences, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564)
2 University of California San Diego, Scripps Institution of Oceanography, San Diego, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242)
3 The University of Tokyo, Research Center for Advanced Science and Technology, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X)