It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
ABSTRACT
The PI3K-AKT pathway has pleiotropic effects, and its inhibition has long been of interest in the management of prostate cancer, where a compensatory increase in PI3K signaling has been reported following Androgen Receptor (AR) blockade. Prostate cancer cells can also bypass AR blockade through induction of other hormone receptors, in particular the glucocorticoid receptor (GR). Here we demonstrate that AKT inhibition significantly decreases cell proliferation through both cytostatic and cytotoxic effects. The cytotoxic effect is enhanced by AR inhibition and is most pronounced in models that induce compensatory GR expression. AKT inhibition increases canonical AR activity and remodels the chromatin landscape, decreasing enhancer interaction at the GR gene (NR3C1) locus. Importantly, it blocks induction of GR expression and activity following AR blockade. This is confirmed in multiple in vivo models, where AKT inhibition of established xenografts leads to increased canonical AR activity, decreased GR expression, and marked anti-tumor activity. Overall, our results demonstrate that inhibition of the PI3K/AKT pathway can block GR activity and overcome GR-mediated resistance to AR-targeted therapy. Ipatasertib is currently in clinical development, and GR induction may be a biomarker to identify responsive patients or a responsive disease state.
SIGNIFICANCE Induced GR expression is compensatory for AR blockade and confers resistance to AR-targeted therapy. Here we show that inhibition of the PI3K/AKT pathway remodels the chromatin landscape, blocks the induction of GR expression and overrides enzalutamide resistance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer